Present Status of Development of Long-Lived

Cluster and Hybrid

Carbon Stripper Foils at KEK

- I. Sugai^{1*}, Y. Takeda¹, M. Oyaizu¹, H. Kawakami¹, Y. Irie¹, Y, Arakida¹, I. Yamane¹, M. Kinsho², T. Hattori³, K. Kawasaki³,
- 1 High Energy Accelerator Research Organization,
- 2 Japan Atomic Energy Research Institute
- 3 Tokyo Institute of Technology,

Talks:

- Introduction
- o Preparation of carbon stripper foils by a CADAD method
- Development of a controlling method of the carbon build-up on thin carbon stripper foils during beam irradiation
- Lifetime measurements of carbon stripper foils with a low energy 3.2MeV, Ne⁺ beam
- Instruments for development of new type of thick carbon stripper foils for 3GeV proton strage ring accelerator
- Summary

3.2MeV, ²⁰Ne⁺ ion beam of 2-3μA with a 3.5mmφ beam spot

2. Foil Development by CADAD

Foils made by DC-arc Discharge: Very strong for heavy ion with High Intensity.

Foils made by AC arc-Discharge: Very strong for mechanical strength

By combined (A) and (B)

We developed a Controlled AC · DC Arc-Discharge Method.

Relationship between the ratio R and the lifetime (Lifetime measurements were performed with a 3.2MeV, Ne $^+$ at 2.5±0.5 μ A of 3.5mm ϕ beam spot)

Total and partial pressures of the residual gases in the chamber (unit : Torr)

Тр	H ₂	CH ₄	H ₂ O	N ₂	со	O ₂	CO ₂	НС
2.0x10⁵	5.8x10 ⁻⁷	6.3x10 ⁻⁷	7.6x10 ⁻⁶	9.2x10 ⁻⁷	7.8x10 ⁻⁷	3.3x10 ⁻⁷	3.4x10 ⁻⁷	9.6x10 ⁻⁶

Total pressure is very poor, 2.0x10⁵ Torr

— Very thin to Very thick —

Challenge to the utmost limit thickness by using CADAD method

Thickness changes under $^{20}\text{Ne}^+$ ion irradiation of 3.2MeV and 1 $\sim\!\!3~\mu\text{A}$ of 3.5 ϕ beam spot Three different evidences: Thickening. Non change and Thinning

What is the essential point for heavy ion stripper foil?

It is "thin and long lifetime"

Thin foil High beam transmission
Contrary to "Long lifetime"

Build-up phenomena plays seriously negative role to

- ① Beam transmission
- 2 Lifetime

Hence, it is "very important to control the build-up"

Sources of highly transmission

Lifetime Measurment with a 3.2 MeV Ne⁺ Ion Beam

Definition of Lifetime: Integrated beam current (mC) per unit area (cm²) [lo · T]

Carbon foil (1 - 15µg/cm²)

We have found that carbon build-up is very sensitive to the foil temperature

We measured:

- Carbon build-up vs Temperature
- Lifetime vs Temperature
- Lifetime vs Carbon build-up

Measured trasmission of (a) Au ions and (b) O ions in Tandem accelerator (University of Tsukuba) at the terminal voltage 10 MeV as function of carbon stripper foil thickness

Experimental Setup for the lifetime measurements

Carbon Build-up vs Temperature

Lifetime vs Temperature

Lifetime vs Carbon Build-up

Carbon Build-up Thickness (µg/cm²)

